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Fibrosis is a pathological and irreversible state of excessively synthesized extracellular 

matrix fibres induced by abnormal tissue scarring. Effective diagnostic tools for early 

management of patients with fibrosis are missing. Here, I discuss the recent advances 

in the quantification of Fibronectin fibres and the interest of novel biologics for diagno-

sis.  
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Tissue repair and fibrosis 
Multiple circumstances including inflammation and 

diseases lead to tissue damages that need repair. 

The recurrent and exacerbated repair can lead to 

uncontrolled and irreversible scarring of the tissue 

with an excessive accumulation of extracellular 

matrix (ECM) proteins including the glycoproteins 

Fibronectin and Collagens1. Theoretically, all play-

ers in normal tissue repair are potential contribu-

tors to fibrosis in uncontrolled pathological condi-

tions. Several players within the injured tissue may 

contribute and include the damaged cells that 

need clearance, the inflammatory immune cells 

that are recruited to the wound site releasing the 

necessary cell activation factors, the endothelial 

cells that allow immune cell recruitment and con-

tribute to ECM synthesis and wound healing, and 

fibroblasts that are activated to proliferate and syn-

thesize ECM fibres to provide the required me-

chanical strength to the repaired tissue2–4.  

However, when recurrent and exacerbated, the 

functions of those players become uncontrolled 

leading to fibrosis, an excessive accumulation of 

ECM proteins and irreversible scarring of the tis-

sue5. Fibrotic scarring is deleterious for normal 

functioning of the tissue and alters normal cell sur-

vival, nutrient delivery as well as gas (oxygen and 

carbon dioxide) exchanges resulting in cell de-

mises and forming regions made of only extracel-

lular matrix components6,7. Fibrosis can occur in 

all organs but is often associated to sites of 

chronic inflammatory diseases and cancers8–13. 

Today, fibrosis is uncurable, but some clinical so-

lutions are proposed to slow down its evolu-

tion14,15. If not managed early and properly, fibrosis 

may lead to complete unfunctional state of the tis-

sue, resulting in organ failure and death16. There 

is an urgent need of diagnostic tools and bi-

omarkers of nascent fibrosis that can allow an ef-

fective clinical management of the different forms 

of fibrosis. Developing efficient approaches for 

https://rviews.org/index.php/cellreviews/article/view/1/2
https://rviews.org/index.php/cellreviews
https://www.rviews.org/
https://creativecommons.org/licenses/by/4.0
mailto:asidibe@rviews.org
https://rviews.org/index.php/cellbiology/article/view/17
https://ark.rviews.org/ark:/70296/cb-16csqmvns8
https://doi.org/10.70296/cb-16csqmvns8
https://orcid.org/0000-0003-2808-3744


Sidibé A. https://rviews.org/index.php/cellbiology/article/view/17 

Experimental Medicine  

News and Views 
 

30 
 

October 6, 2024 | Volume 1, Issue 1 :17 

 

Rviews Press, Marseille, France | CELL BIOLOGY 

diagnosis, prognosis and therapy of fibrosis de-

pends on a better understanding of the key molec-

ular and pathogenetic mechanisms that support 

the synthesis of extracellular matrix proteins 

during normal as well as pathologic inflammation 

and wound healing (Fig. 1). 
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Fibrosis: an issue of ECM syn-

thesis 
Our understanding of the pathogenesis of fibrosis 

has outstandingly advanced. From an inflamma-

tion-based conception, it is becoming clear that 

the primary cells involved in the excessive synthe-

sis of ECM proteins such as myofibroblasts and 

endothelial cells deserve particular attention for 

the development of diagnostic and therapeutic 

tools2,5,17,18. In fact, inflammation is an important 

contributor to the fibrotic process. Inflammatory 

cells are recruited to sites of wounds provoked by 

cell apoptosis and/or necrosis induced by internal 

or external agents. The recruited immune cells 

participate in the clearance of tissue debris and re-

lease crucial cytokines and factors such as the 

basic fibroblast growth factor (bFGF or FGF2), the 

transforming growth factor beta (TGFβ), vascular 

endothelial growth factor (VEGF)-A or the platelet-

derived growth factor (PDGF) that lead to the pro-

liferation and transformation of fibroblasts into my-

ofibroblasts19–24. Myofibroblasts that are charac-

terized by the expression of alpha-smooth muscle 

actin (αSMA), are high mechanical tension devel-

oping mesenchymal cells that deposit ECM pro-

teins including Fibronectin and Collagen fibres to 

regions of myofibroblastic foci5,18,25,26. Although 

the growth factors have important implications for 

the proliferation and transformation of myofibro-

blasts, the manner these cells interact with their 

environment as well as how the deposited matrix 

fibres support the applied mechanical load are 

particularly critical for a sustained de novo matrix 

deposition4,17. The current advances in our 

understanding of the myofibroblast transformation 

process as well as the mechanisms of ECM pro-

tein fibrillogenesis support the idea that fibrosis is 

primarily an issue of ECM synthesis and how mes-

enchymal cells feel the need of depositing high 

load-supporting matrix fibres such as Collagens. 

 

Focus on ECM proteins for diag-

nosis 

Current diagnosis 

Fibrosis is currently diagnosed by multidisciplinary 

methods including histopathological features with 

the appearance of areas of cell demises with al-

tered tissue architecture by excessive bundles of 

ECM fibres on tissue biopsies in most disease 

contexts. In some pathological conditions such as 

the idiopathic pulmonary fibrosis (IPF), the combi-

nation of symptoms, functional analysis by spirom-

etry, endurance test such as six-minute walk test 

and imaging by high resolution computed tomog-

raphy (HRCT) allows physicians to also appreci-

ate the degree of usual interstitial pneumonia 

(UIP) as well as the lung functional alteration27,28. 

In cancer biopsies, the appearance of fibrosis is 

common and was associated with poor prognosis 

and the disease resistance to therapy including 

immunotherapy and chemotherapy10–12,29–32. How-

ever, no validated biomarker of fibrosis of any or-

gans or tissue type was approved by the American 

Food and Drug Administration (FDA) for clinical 

use. In the example of IPF patients, several 

Figure 1: Pathogenesis of fibrosis and early diagnosis opportunity 

I) Internal or external agents induce cell death by necrosis or apoptosis leading to tissue injuries/wounds 
that need to be repaired. II) Activation of endothelial cells initiates inflammation and induces the recruit-
ment of immune cells that release large amount of growth and angiogenic factors such as VEGF,  FGF2, 
TGFβ and PDGF that in turn trigger the granulation tissue formation for wound healing; III) wound clo-
sure and fibroblast activation, which proliferate, form fibroblast foci, synthesize ECM and transform into 
myofibroblasts in regions of high mechanical strain and high expression of Collagen. The ECM synthesis 
step of the pathogenesis offers an opportunity of detecting cases of nascent fibrosis. In normal wound 
healing process (a), fibroblasts synthesize Fibronectin fibres in a controlled fashion by making a rela-
tively low amount of relaxed Fibronectin fibres, which are for most mechanically stretched by the cells 
(b) and the small remaining Fibronectin fibres are stabilized by low amount Collagen I fibres (c) allowing 
a normal healing of the wound. In pathological pre-fibrotic conditions, (a’ and b’) the exacerbated for-
mation of the relaxed form of Fibronectin fibres induces the synthesis of abnormally high amount of 
Collagen I to bear the overload (c’). Probes such as adhesins-derivatives capable of specifically recog-
nize the relaxed form of Fibronectin fibres provide an opportunity for tracking regions of nascent fibrosis 
and following the fibrotic activity in several chronic diseases. 
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molecules found highly expressed were proposed 

to serve as biomarker of the disease and they in-

clude metalloproteinases (MMP) such as MMP1 

and MMP7, the tissue inhibitors of MMPs such as 

TIMP-1, the surfactant proteins A and D (SPA and 

SPD), Krebs von den Lungen-6, Galectin-3, 

S100A12, proCollagen III N-terminal peptide, mi-

croRNAs and periostin33,34. None of these outlined 

putative biomarkers could serve as diagnostic 

tools due to the lack of specificity.  

 

Fibronectin and its structural organiza-

tion for early-stage fibrosis diagnosis 

The hierarchical assembly and organization of 

ECM proteins is critical for normal development, 

wound healing but also for fibrotic scarring in fibro-

sis and cancers35–43. A better understanding  of the 

hierarchical composition and assembly of ECM 

might provide a unique opportunity for developing 

the most relevant diagnostic tools for an early 

management of patients. In fact, in both normal 

and pathological processes, the active assembly 

of Fibronectin fibres is required to establish the 

needed scaffold for efficient Collagen I deposition 

in tissue interstitia44–47. Indeed, although the mon-

omeric Collagen I can polymerize in vitro through 

entropy, its assembly in vivo require the Fibron-

ectin scaffolding through a cell-mediated active fi-

brillogenesis48. Collagen-Fibronectin interactions 

through Fibronectin’s gelatin-binding domain is re-

quired for the initial deposition of Collagen fibres44. 

The binding of Collagen I to Fibronectin occurs 

through sites at the N-terminus of Fibronectin and 

encompass several modules including FnI6, 

FnII1-2 and FnI7-9. Interfering with Fibronectin ex-

pression or inhibiting the interaction of Collagen I 

with the Fibronectin scaffold were both found to 

block Collagen deposition in cell culture and pre-

clinical experimental model in mouse49–52. Diag-

nostic methods based on monitoring the active fi-

brillogenesis of de novo Fibronectin fibres are rel-

evant and might be interesting for detecting early-

stage fibrosis or abnormal pre-fibrotic regions in 

organs. 

Recent findings showed that the mechanical strain 

applied to the assembled Fibronectin scaffolds as 

well as the resulting secondary structure of the 

protein N-terminal region are determinant for Col-

lagen I interaction4,53. Precisely, only assembled 

Fibronectin fibrils in relaxed form and under low 

mechanical strain can bind to Collagen I and lead 

to Collagen fibre assembly4. Thus, monitoring ab-

normal quantity of the relaxed form of Fibronectin 

fibres might provide with the most adequate 

method of diagnosing pre-fibrotic states as well as 

the early-stage fibrosis. 

 

Bacterial adhesins target Fibronectin N-

terminus 

Adhesins from several bacterial strains including 

but not limited to Staphylococcus aureus, Strepto-

coccus pyogenes, Streptococcus dysgalactiae, 

Streptococcus equisimilis,  Borrelia burgdorferi 

and many others interact with Fibronectin fibres at 

the N-terminus and participate in the pathogenic 

infection of host cells54–56. Precisely for example, 

the modules FnI1-5 of Fibronectin N-terminus are 

recognized by motif repeats of the Fibronectin-

binding proteins (FnBPs) of S. aureus (FnBPA1-

11) and S. pyogenes (SfbI1-5)57. Most adhesins-

derived proteins bind sites encompassing different 

FnI modules of Fibronectin with high affinity by 

forming anti-parallel tandem β-zippers58. Ad-

vances in this field showed that FnBPs can be 

used to distinguish between relaxed (under low 

strain) and stretched (under high strain) Fibron-

ectin fibres in cells and at the tissue level59. Re-

cently, the FnBB-4 B3 and FnBP5 from adhesins 

of respectively S. dysgalactiae and S. aureus were 

found incapable of binding stretched Fibronectin 

fibres due to structural mismatches60. In a proof-

of-concept study, FnBP5 was found to bind re-

laxed Fibronectin in tumour sections, and colocal-

ize with the myofibroblast marker αSMA as well as 

Collagen bundles of deposited Collagen revealed 

by the second harmonic generation signals59. No-

tably, in the same study, radiolabeled FnBP5 

showed strong signals in prostate cancer (PC-3) 

xenografts in the animal analysis by positron emis-

sion tomography (PET). Adhesins-derived probes 

hold promising features for serving as diagnosis 

tools for the management of early-stage fibrosis in 

patients. 
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Probing Fibronectin revealed 

nascent fibrosis in experimental 

IPF 
The functional upstream domain (FUD) of the S. 

pyogenes SfbI-containing adhesin was estab-

lished to bind the site covering the N-terminus and 

gelatin-binding site of Fibronectin61. The FUD pep-

tide showed inhibitory activity on Fibronectin fibril-

logenesis as well as antifibrotic capacity in preclin-

ical studies in mouse52. In addition, the FUD pep-

tide was modified by adjunction of specific poly-

ethylene glycol (PEG) moieties improving its phar-

macokinetic properties in vivo62–64. Thereby, PEG-

FUD was shown to target the deposition of Fibron-

ectin and Collagen fibres in the bleomycin-induced 

murine pulmonary fibrosis model in vivo65. 

Interestingly, in a recent study reported by Lee et 

al, the interest of the PEG-FUD was extended for 

use as a diagnostic tool for tracking nascent fibro-

sis in preclinical model of IPF65. Indeed, Lee et al 

brought strong proof-of-concept evidence that 
64Cu radiolabeled PEG-FUD allows the detection 

of early fibrosis by PET/CT imaging. First by im-

munofluorescence, the authors showed in bleo-

mycin-induced IPF that PEG-FUD strongly stained 

area of lung tissue with cell demise and high ECM 

synthesis as determined by anti-Fibronectin stain-

ing although presenting low coloration by Mas-

son’s trichrome stain. The authors have shown the 

specificity of PEG-FUD by using a non-PEGylated 

FUD peptide as competitor, which substantially re-

duced the tissue staining. Interestingly, a mutated 

form of PEG-FUD (PEG-mFUD) with seven amino 

acid deletion, incapable of strongly interacting with 

Fibronectin62, was unable to stain the nascent fi-

brotic foci in lung. This was particularly an im-

portant demonstration as it showed how this par-

ticular PEGylation did not interfere with the FUD 

peptide binding to the exposed Fibronectin N-ter-

minus. 

Lee et al then developed a 64Cu-PEG-FUD to 

study the spatial distribution of early fibrotic re-

gions in mouse treated by bleomycin. The ex vivo 

analysis of organs showed that lung slices pre-

sented strong signals of 64Cu-PEG-FUD com-

pared to 64Cu-PEG-mFUD as early as eleven days 

post-treatment by bleomycin. The specific staining 

of lung slices by 64Cu-PEG-FUD was also shown 

in the decellularized tissue with similar results 

demonstrating that the insoluble extracellular fi-

bres were the main target of the radiolabeled 

PEG-FUD consistent with previous reports. In 

PET/CT imaging of animals after three days of ble-

omycin treatment, 64Cu-PEG-FUD showed higher 

signal in lungs compared to 64Cu-PEG-mFUD. No-

tably, the radiodensity, a micro(µ)-CT characteris-

tics of fibrotic tissue were not present at three days 

post-bleomycin treatment. Consistently, eleven 

days post-bleomycin treatment, the signal of 64Cu-

PEG-FUD correlated with the µCT radiodensity 

demonstrating a correlation of the probe signal 

with the fibrotic activity in bleomycin-induced IPF 

model. Overall, Lee et al made the proof-of-con-

cept and have demonstrated that the probes 

based on the radiolabeled 64Cu-PEG-FUD can be 

used to diagnose sites of nascent fibrosis by 

PET/CT imaging and that radiolabeled PEG-FUD 

might be a valuable tool for use in clinical practice 

for the follow up of patients with fibrosis including 

IPF. 

One of the limitations of the use of 64Cu-PEG-FUD 

in PET/CT is the accumulation of the radio-signal 

in liver, an organ that produce large amount of Fi-

bronectin. The heart and kidneys also presented 

high accumulation of the 64Cu-PEG-FUD probe 

early after the intravenous injection of the tracer. 

The heart signal might be due to blood circulation 

of the probe whereas the signal in kidney was 

likely caused by the elimination process as both 

organs showed similar signals with the saline-

treated mice or with the 64Cu-PEG-mFUD mutant 

control in bleomycin-treated animals. A method 

that the authors proposed to mitigate the non-spe-

cific background signals of 64Cu-PEG-FUD probe 

in liver was to simultaneously inject an empirical 

amount of unlabeled PEG-FUD. Other parameters 

such as the latency between tracer injection and 

PET/CT imaging could also be interesting for opti-

mizing the specific detection of pre-fibrotic or early 

fibrotic areas in organs. In the perspective, it would 

be of interest to study the correlation between the 

PET signal of 64Cu-PEG-FUD and the radiodensity 

of CT in more advanced models of fibrosis in 

mouse. The accumulating data suggests that it is 

time to start clinical trials in patients with advanced 

fibrosis in order to evaluate whether the 
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PEGylated FUD and its derivatives can actually 

help clinician to analyze the fibrotic activity.  

The FUD peptide as well as other FnBP motives 

derived from bacterial adhesins target the struc-

tured N-terminus of Fibronectin fibres. Strong evi-

dence showed that under high mechanical strain, 

the stretched Fibronectin losses the second struc-

ture of its N-terminus preventing the bacterial ad-

hesin binding to the fibres60. In addition, only the 

relaxed Fibronectin fibres that are under low me-

chanical strain require and allow Collagen fibre 

synthesis to bear the overload. This suggests that 

developing adhesins-derived sensors that specifi-

cally and efficiently probe the relaxed Fibronectin 

fibres is crucial for tracking nascent fibrotic regions 

of the tissue. Tracking the relaxed Fibronectin fi-

bres in suspicious tissues may be more specific to 

pre-fibrosis or nascent fibrosis than broadly quan-

tifying Fibronectin. The adhesins-derived sensors 

have the advantage to be small and recognize 

higher order organizational state when compared 

to antibodies, which can be affected by epitope 

hindrance in fibres in addition to their characteris-

tic low penetration in tissue. New generation of ad-

hesins-derived sensors are under development to 

improve their sensitivity and stability for efficiently 

tracking the relaxed or pro-fibrotic fibres of Fibron-

ectin. This will allow their use in clinical routine to 

improve the management of patients susceptible 

of suffering from different fibrotic diseases includ-

ing cancers, IPF, liver and kidney fibrosis.  
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